Search results
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch.
Mar 22, 2024 · What is Hugging Face Transformers? Hugging Face Transformers is an open-source Python library that provides access to thousands of pre-trained Transformers models for natural language processing (NLP), computer vision, audio tasks, and more.
The models can be used across different modalities such as: 📝 Text: text classification, information extraction, question answering, summarization, translation, and text generation in over 100 languages. 🖼️ Images: image classification, object detection, and segmentation.
🤗 transformers is a library maintained by Hugging Face and the community, for state-of-the-art Machine Learning for Pytorch, TensorFlow and JAX. It provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
State-of-the-art Machine Learning for the web. Run Transformers directly in your browser, with no need for a server.
Install 🤗 Transformers for whichever deep learning library you’re working with, setup your cache, and optionally configure 🤗 Transformers to run offline. 🤗 Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, and Flax.
🤗 Transformers State-of-the-art Machine Learning for PyTorch, TensorFlow and JAX. 🤗 Transformers provides APIs to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you time from training a model from scratch.
This course will teach you about natural language processing (NLP) using libraries from the Hugging Face ecosystem — 🤗 Transformers, 🤗 Datasets, 🤗 Tokenizers, and 🤗 Accelerate — as well as the Hugging Face Hub. It’s completely free and without ads.
Get up and running with 🤗 Transformers! Whether you’re a developer or an everyday user, this quick tour will help you get started and show you how to use the pipeline() for inference, load a pretrained model and preprocessor with an AutoClass, and quickly train a model with PyTorch or TensorFlow.
In this tutorial, you will fine-tune a pretrained model with a deep learning framework of your choice: Fine-tune a pretrained model with 🤗 Transformers Trainer. Fine-tune a pretrained model in TensorFlow with Keras. Fine-tune a pretrained model in native PyTorch.